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ABSTRACT

This work describes developments to improve theDoppler radial wind data assimilation scheme used in the

National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) data as-

similation system with a focus on convection-permitting, 0–18-h forecasts of a heavy precipitation single case

study. This work focuses on two aspects: 1) the extension of the radial wind observation operator to include

vertical velocity and 2) a refinement of the radial wind super-observation processing. The refinement includes

reducing the magnitude of observation smoothing and allowing observations from higher scan angles into the

analysis with the intent to improve the assimilation of the radar data for operational, convection-permitting

models. The results of this study demonstrate that there is sensitivity to the refinement in super-observation

settings. The inclusion of vertical velocity in the observation operator is shown to have a neutral to slightly

positive impact on the forecast. Results from this study are suggested to be used as a foundation to prioritize

future research into the effective assimilation of radial winds in an operational setting.

1. Introduction and background

Only four national centers assimilate Doppler ra-

dar radial velocities (i.e., radial winds) in operational,

convective-scale systems: Météo-France, the Met Of-

fice, the National Oceanic and Atmospheric Adminis-

tration (NOAA) National Centers for Environmental

Prediction (NCEP), and the Japan Meteorological

Agency (Gustafsson et al. 2018). NCEP first assimilated

radial winds during the 1996 summer Olympics in

Atlanta, Georgia; however, it was not until 2006 that

radial winds were assimilated operationally in the 12-km

North American Mesoscale Forecast System (NAM)

(http://www.emc.ncep.noaa.gov/NAM/clog.php). Opera-

tional numerical weather prediction (NWP) models have

since progressed to convection-permitting resolutions

(i.e., where convection is not parameterized) as a result

of increased computer power and scientific advancement.

Operational data assimilation systems, on the other hand,

have not yet progressed to best leverage radial winds for

convective-scale NWP systems. The assimilation of radial

winds from the U.S. Weather Surveillance Radar-1988

Doppler network (Crum and Alberty 1993) has received

a great deal of focus over the past few decades in the

research community since Doppler radar is one of

the only networks of instruments capable of sampling

the storm-scale environment. Many studies (e.g., Gao

et al. 2004; Xiao et al. 2005; Gao and Stensrud 2014;

Johnson et al. 2015) have shown methods for assimilat-

ing radial winds that can benefit the analysis and fore-

cast of convection-permitting models—most of these

configurations are not yet suited for operational appli-

cation owing to computational expense (e.g., compute

time, nodes required, disk space). In this study, the focusCorresponding author: Donald E. Lippi, donald.e.lippi@noaa.gov
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is on the assimilation of the radial wind observations. The

exploration of the direct assimilation of radar reflectivity

along with radial winds is beyond the scope of this man-

uscript and is the subject of complementary, collaborative

efforts (e.g., Duda et al. 2019). However, reflectivity is

used indirectly in all experiments in this study by applying

radar-derived latent heating tendencies in the forward

part of the digital filter initialization (Rogers et al.

2017; Gustafsson et al. 2018; Peckham et al. 2016).

Radial wind observations (Liu et al. 2016) from scan

angles greater than 58 have historically been ignored for

assimilation in operations because data coverage re-

duces rapidly as the elevation angle increase (Fig. 1).

Additionally, model horizontal grid spacing was suffi-

ciently coarse that one could ignore the analysis of

nonhydrostatic motions when the radial wind assimila-

tion algorithm was originally implemented at NCEP.

NCEP’s radial wind observation operator did not ac-

count for vertical motion which necessitated the restric-

tion of a maximum allowable elevation angle in order

to exclude observations with high scan elevation angles

from contaminating the analysis, as the contribution

from vertical motions would potentially become non-

negligible at such angles. Each of the other centers that

assimilate radial wind observations also only consider

the horizontal wind components in their corresponding

observation operator (Lindskog et al. 2004; Simonin

et al. 2014; Liu et al. 2005; Ishikawa and Koizumi 2006).

By limiting the number of scan elevations (Fig. 1) in the

assimilation process, a considerable amount of potentially

useful information is discarded. Moreover, ignoring ver-

tical velocity in the vicinity of strongly nonhydrostatic

flows [i.e., where vertical velocity can be significant

(5–50m s21)], is potentially problematic. Therefore,

the Gridpoint Statistical Interpolation system’s (GSI; Wu

et al. 2002) radial wind observation operator is extended

to include vertical velocity. In future related studies, the

inclusion of vertical velocity in the assimilation system will

have potentially important implications for storm-scale

models by helping to establish some of the nonhydrostatic

dynamics associated with deep convective storms, thus

leading to an improved forecast of these storms. However,

due to current limitations of the model used in this study,

the analysis of vertical velocity does not directly feed back

into the forecast but acts primarily as a sink term in

the observation operator. This allows the analysis of ver-

tical velocity to have an indirect impact on the resulting

forecast which has been shown through testing.

Another aspect to consider for improving the radial

wind assimilation is reducing the errors that arise from

the disparity between observation and model resolu-

tion (i.e., errors of representativeness) (Janjić et al.

2018). Prior to assimilation, the radial wind observations

are on local polar radar coordinates having dimensions

approximately 18 azimuth 3 250-m gates with a tem-

poral frequency of 5–10min. The spatial and temporal

resolution of this data exceeds the resolution of most

operational analysis systems (e.g., a 9-km analysis grid).

To account for some degree of representativeness

error, it is standard practice to combine the radial wind

observations to create so-called ‘‘super-observations’’

(e.g., Rihan et al. 2008; Lindskog et al. 2004; Simonin

et al. 2014; Wheatley et al. 2015). Super-observation

methods vary in technique, but all have the same pur-

pose and naturally involve some degree of smoothing

of the information content and underlying variance

in the observation field. The super-observation tech-

nique used in the GSI follows the method of Alpert

and Kumar (2007) using tunable parameters that have

not been modified in operations since the advent of

convection-permitting NWP. The super-observation

parameters require revisiting as operational NWP

and data assimilation moves toward resolutions where

some of these mesoscale convective circulations are

resolved. Refining these parameters will help retain

storm-scale information content that, historically, would

have been necessarily smoothed.

This study investigates the impacts and sensitivity

of radial wind assimilation on a convection-permitting

forecast system with specific attention to the formula-

tion of the observation operator and super-observation

preprocessing. The modifications to the radial wind as-

similation scheme in the present study are considered

first steps toward advancing the use of these observa-

tions at the convective-scale in an operational setting.

In section 2, the model and data assimilation systems

are described along with a description of the enhance-

ments to the existing radial wind observation operator.

FIG. 1. Radar beam height estimation in km above radar level as

a function of range and elevation angle using the 4/3rds rule for

standard atmospheric refraction. The gray shaded area shows the

elevation angles assimilated prior to this work with the maximum

elevation angle restricted to 58. The blue shaded area corresponds

to the max elevation angle of WSR-88Ds from the available vol-

ume coverage patterns and can be considered the volume that

could potentially be assimilated when accounting for vertical ve-

locity in the observation operator.
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The results are presented in section 3. This work is

concluded in section 4 with a summary and a discussion

of future work.

2. Methods

a. Model and data assimilation configuration

Retrospective forecasts were produced using the

North American Mesoscale Forecast System, version

4 (NAMv4; Rogers et al. 2017). TheNAMv4 runs hourly

data assimilation cycles and was reconfigured to issue

36-h forecast four times per day at 0000, 0600, 1200, and

1800 UTC over the 12-km parent and 3-km CONUS

(Fig. 2) domains and 18-h forecasts at each intermedi-

ate hour (e.g., 0100, 0200, 0300, 0400, and 0500 UTC

etc.) over the 3-km CONUS nest. Gustafsson et al.

(2018) and Djalalova et al. (2016) provide additional

information about the data assimilation cycling and

other model characteristics of the NAMv4 CONUS nest

forecast system. The review paper Gustafsson et al.

(2018) also provides configurations for other opera-

tional centers supporting convective-scale data as-

similation and NWP. The configurations used by the

parent and CONUS nest domains are summarized in

Table 1.

Data assimilation is performed using the GSI (Wu

et al. 2002) system. The GSI is a variational analysis

system formulated in model grid space and is used in

many operational applications at NCEP, such as the

NAMv4 forecast system (Rogers et al. 2017), the Global

Forecast System (Kleist et al. 2009), the Rapid and

High Resolution Rapid Refresh systems (Hu et al.

2017), and the Real-Time Mesoscale Analysis system

(De Pondeca et al. 2011). In this study, the GSI is con-

figured using a hybrid three-dimensional ensemble-

variational algorithm (3DEnVar; Wang et al. 2013;

Lorenc 2013; Kleist and Ide 2015; Wu et al. 2017) where

the static covariance is implicitly blended with an en-

semble covariance through the extended control vari-

able method (Lorenc 2003; Wang 2010) and uses a T574

(;35-km grid spacing) 80-member ensemble from the

Global Forecast System to provide the ensemble back-

ground error covariance (Wu et al. 2017). The weighting

between the static and the flow-dependent, ensemble

background error covariance is set to 25% and 75%,

respectively, which is consistent with the settings used in

the operational NAMv4’s 3-km CONUS nest data as-

similation scheme. The univariate portion of the static

background error covariance is modeled using re-

cursive filters (Purser et al. 2003a,b) and statistical

balances are employed to account for the cross co-

variances between control variables (e.g., stream-

function with balanced temperature, velocity potential,

and surface pressure). In regional applications, re-

cursive filters are also used to impose localization of the

alpha control variable as part of the ensemble-based

background error covariance (Wu et al. 2017; Purser

et al. 2003a,b). The static background error covariance

FIG. 2. Computational and verification domains. The outer

(black) and inner (red) domains are the 12-km parent and 3-km

CONUS nest computational domains, respectively. The objective

verification statistics were calculated over the inner (gray shaded)

domain located over the south-central (SC) United States using

5-km grid spacing.

TABLE 1. Summary of the configuration and physical parameterizations used by the two NMMB domains.

Domain

Grid

space Radiation (LW/SW) Microphysics Turbulence Surface layer Land surface

Gravity

wave drag Cumulus

Parent 12 km RRTMG (Mlawer

et al. 1997; Iacono

et al. 2008)

Ferrier–Aligo

(Aligo et al.

2018)

MYJ (Janjić

2001)

MYJ (Janjić

2001)

Noah (Ek et al.

2003)

On (Alpert

2004)

BMJ (Janjić

1994)

CONUSnest 3 km RRTMG (Mlawer

et al. 1997; Iacono

et al. 2008)

Ferrier–Aligo

(Aligo et al.

2018)

MYJ (Janjić

2001)

MYJ (Janjić

2001)

Noah (Ek et al.

2003)

None None
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statistics were estimated using the so-called NMC

method (Parrish and Derber 1992), which averages

the differences between lagged forecast pairs (e.g., 24-

and 48-h forecasts) valid at the same time. The static

background error covariance is identical to that used in

the operational NAMv4 system, formulated to be iso-

tropic and vary vertically and latitudinally.

The comparatively coarse nature of the static back-

ground error covariance and ensembles leveraged in the

hybrid 3DEnVar system limits the finescale nature of

the analysis increments that can be prescribed. There-

fore, the data assimilation is performed on a grid that

is 3 times coarser than the model grid (i.e., a 9-km

analysis grid). This practice is consistent with the oper-

ational configuration of the NAMv4 3-km CONUS nest

system and allows for efficient use of computational re-

sources without changing the characteristics of the

analysis; however, this aspect will be revisited in future

work when a finescale convection-permitting ensemble

is included in the EnVar algorithm.

b. Extending the radial wind operator for vertical
velocity

Data assimilation requires the comparison of model

state variables to observations. As is the case for many

observation types, radial wind is not a direct model

prognostic variable; therefore, a relationship which

transforms the model state x into an observation

equivalent y must be used. This transformation occurs

with the use of the observation operatorH. The general

relationship between the model state variables and ob-

servations can be written as follows:

y 5 H(x) 1 eo , (1)

where eo is the observational error. Errors associated

with radial wind observations can be attributed to four

main sources: instrument error, preprocessing errors,

errors of representativeness, and errors introduced by

the observation operator (Waller et al. 2016). Errors

introduced by the observation operator are the result

of omissions and approximations of the equation.

1) THE RADIAL WIND OBSERVATION OPERATOR

The original GSI radial wind operator took the fol-

lowing form:

V
r
(u,a) 5 u cos(u) cos(a) 1 y sin(u) cos(a) , (2)

where Vr is the radial wind observation, u and y are

the model horizontal wind components, u is 908 minus

the azimuth angle of the radar, and a is the elevation

(or tilt) angle of the radar. The formulation here uses

the azimuthal directions based on the unit circle rather

than the cardinal directions. The effects of Earth’s cur-

vature and atmospheric refraction are accounted for

via the four-thirds approximation (e.g., Ge et al. 2010).

Wind rotation is also included to accommodate relevant

coordinate conversions. These corrections are included

in the azimuth and elevation angles of Eq. (2).

Historically, the radial wind operator has not

accounted for the influence of vertical motion, owing

to the hydrostatic scales of motion to which it was ap-

plied (e.g., 12 km). Due to this restriction, radial wind

observations associated with scan elevation angles

greater than 58 were routinely discarded in order to

reduce the impact of vertical motion on the radial

wind field. Using the simplified observation operator

[Eq. (1)] will produce a bias error in the model equiva-

lent value when high elevation angles (e.g., Fig. 1) are

used considering the vertical component of the wind

could make a nontrivial contribution in the observed

radial wind especially in the presence of strongly non-

hydrostatic motions. However, the sensitivity to this

assumption will be a function of several factors such as

the model resolution.

To extend the radial wind observation operator to

include the vertical component of the wind, Eq. (2) was

modified to include a third term:

V
r
(u,a) 5 u cos(u) cos(a) 1 y sin(u) cos(a) 1 w sin(a) ,

(3)

where w represents vertical velocity.

The difference between these two observation oper-

ators is shown in Fig. 3. When w is zero, there is no

difference between the observation operators. When

w is positive (negative), Eq. (2) underestimates (over-

estimates) the radial wind. The magnitude of error is

strongly dependent on the vertical velocity as well as

the elevation angle. The maximum possible error for

an elevation angle more practically used in an opera-

tional scenario, less than 208, with an assumed vertical

velocity of 10m s21, is 63m s21. Such large vertical

motions are not unusual for deep convection. This er-

ror would be much greater (less) in regions of very

strong (weak) vertical motion and/or steeper (less

steep) elevation angles.

Large raindrops, around 5mm in diameter, have ter-

minal velocities (wt) of about 10ms21 (Spilhaus 1948)

leading to an error from Eq. (3) of wt sin(a), or about

1.7m s21 in the most extreme cases for elevation angles

of 108—the highest elevation angle considered in the

experiments. Equation (3) more accurately simulates

the radial winds as compared to Eq. (2), although still

contains simplifications that should be considered in

the future (e.g., hydrometeor terminal velocity and
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beambroadening; Fabry 2010). Nonetheless, this change

results in a more physically consistent forward model,

reduces representativeness error, and allows for re-

laxing the maximum radar elevation angle to beyond

58, ultimately allowing a larger volume of observations

to be assimilated.

2) VERTICAL VELOCITY ANALYSIS CONTROL

VARIABLE

The variational analysis (e.g., Hybrid 3DEnVar) is

determined based on the minimization of a cost func-

tion. The cost function is measured, in part, by the

combination of the departures of the observations and

background from a select set of analysis control vari-

ables. The control variables may be any set of model

or model-related variables. In the case of the GSI, the

control variables are chosen with considerations to-

ward Gaussianity and multivariate balance. For exam-

ple, the control variables for the NAMv4 CONUS nest

applications are streamfunction, unbalanced velocity

potential, unbalanced temperature, unbalanced surface

pressure, and normalized specific humidity. During the

minimization of the cost function, increments to the

control variables are made and then added to the ini-

tial background forecast. Only increments to variables

related to the control variables (directly or indirectly

through multivariate relationships) can be affected

in the resulting analysis. Vertical velocity was added

as a control variable to support the analysis of non-

hydrostatic motion, which follows from the work above

to improve the radial wind observation operator.

The experiments here utilize an 80-member ensem-

ble from the Global Data Assimilation System (GDAS)

running at T574 (;35-km). The ensemble-based analy-

sis increment is constructed by utilizing the extended

control variable method (Lorenc 2003) used in the GSI

hybrid 3DEnVar cost function (Wu et al. 2017). The

ensemble perturbation wind variables are u and y and

are not converted into balanced and unbalanced parts.

Ensemble perturbations of w are not used at this time,

owing to the fact that the perturbations are from a

global, hydrostatic ensemble.

The model used in this study, the Nonhydrostatic

Multiscale Model on the B-grid (NMMB; Janjić and

Gall 2012), diagnoses vertical velocity via the non-

hydrostatic continuity equation with the knowledge

of the hydrostatic and nonhydrostatic pressures and

temperature. Therefore, while the model is fully non-

hydrostatic, it does not feature a prognostic term spe-

cifically for vertical velocity (Janjić and Gall 2012). This

presents some difficulty in terms of providing an ana-

lyzed vertical motion field to the model; therefore, the

associated analysis of vertical velocity in this study

serves primarily to reduce error present in the ob-

servation operator and therefore improve represen-

tativeness. However, limited testing has shown that

FIG. 3. The difference [Eqs. (2) and (3)] between the original observation operator [Eq. (2)] and

the observation operator with a term for vertical velocity [Eq. (3)].
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the analysis of vertical velocity can indirectly impact the

forecast.

3) SINGLE OBSERVATION TESTS

A useful tool for diagnosing several aspects of a

data assimilation system is the single observation test.

Here, we seek to verify the successful implementation

of the radial wind operator using synthetic radial wind

observations using a 3DVar configured GSI.1 Two sin-

gle observation tests were used to isolate and test the

vertical and horizontal components of the observation

operator by assigning the elevation angle to two ex-

tremes: 908 and 08, respectively. A 908 elevation angle

corresponds to the radar looking straight up, and the

08 elevation angle corresponds to the radar looking

tangentially to Earth’s surface at the observation lo-

cation. For the 908 elevation test, the observation

was placed about 1 km above ground (corresponding

to approximately model level 18; between 800 and

900 hPa) directly over the Fort Hood, Texas, radar

(KGRK). The observation for the 08 elevation test

was placed about 20 km directly to the east of KGRK

about 200m above ground level (approximately

model level 4; between 1000 and 900 hPa). Although

it is not geometrically possible for a radial wind ob-

servation with an altitude above ground level to have

a corresponding 08 elevation angle, synthetic obser-

vations are used to facilitate testing by relaxing

such rule. This also applies to the 908 test since ele-

vation angles in the real world do not exceed 208 for
WSR-88Ds.

An azimuth angle must be defined for the 08 eleva-
tion test. The assignment of the azimuth angle will not

affect the results of the 908 elevation test since only the

vertical term in Eq. (3) will remain. For demonstration

purposes, we would like to achieve a positive increment

in only the zonal direction for the 08 elevation test (and

vertical direction for the 908 elevation test); therefore a

08 azimuth, or eastward pointing radar was chosen. To

obtain a positive analysis increment with an eastward

(upward) pointing radar, a positive innovation is needed.

This is because the innovations are calculated in

observation space, and outbound radial winds are posi-

tive, which is a westerly (upward) wind for the 08 (908)
elevation test. For both single observation tests, each

observation was assigned an innovation of 11.0m s21

with an observation error of 1.0ms21. The statistical bal-

ance relationships associated with the static background

error covariance were also set to zero to avoid multi-

variate increments to isolate the impact from the single

observation tests (e.g., increments in temperature

when only a u observation was given). Finally, the as-

signed winds were assumed Earth relative, and thus the

winds were not rotated from latitude–longitude co-

ordinates. This ensures the observation is exactly as

prescribed.

From these single observation tests, one can verify

that the newly implemented observation operator

correctly maps the model state into an observed

equivalent quantity so that an analysis increment can

be made to the correct wind component according to

the given observation specifications (e.g., elevation

and azimuth angles). A comparison of the two ex-

periments confirms the successful implementation of

the radial wind operator. As expected, the 908 eleva-
tion test shows an analysis increment for only vertical

velocity (Fig. 4b) depicting an isotropic analysis in-

crement, as expected in a 3DVar analysis. This test

used a globally constant value for the vertical velocity

background error covariance with a value of 0.7m2 s22

and a horizontal and vertical scale of influence of

27 km and 10 grid units, respectively. In contrast, the

08 elevation test has isotropic increments only in the

zonal wind component (Fig. 5a). The length scales for

the horizontal wind components, originating from the

operational NAMv4 forecast system, are much larger

than for vertical velocity hence the comparatively

broad increments.

The background error covariance statistics were not

recalculated to include vertical velocity for this study

since the vertical motion field is a diagnostic quantity

in the forecast mode,2 and therefore acts primarily as a

sink term. The specifications used for the background

error covariance in the single observation tests are used

in the main set of experiments presented in this study.

Some sensitivity experiments were also done with al-

ternate length scales and those results will be discussed

briefly as well.

c. Creating super-observations of radial wind data

Prior to assimilation, the radial wind observations (Liu

et al. 2016) undergo an aggregation and smoothing

procedure to generate super-observations. The super-

observation technique is employed to remove represen-

tativeness errors and reduce the volume of observations,

1 Synthetic observations may refer to observations that cannot

be physically possible but are useful in testing the functionality

of the data assimilation system.

2 Recall that the model in this study diagnoses vertical velocity

via the nonhydrostatic continuity equation using hydrostatic and

nonhydrostatic pressures and temperature. It does not feature a

prognostic term for vertical velocity, instead the associated non-

hydrostatic prognostic term is nonhydrostatic pressure.
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which are often redundant and come at the price of

additional computational expense (Alpert and Kumar

2007). The super-observation procedure involves a

spatial and temporal averaging of the radial wind ob-

servations within a volume defined in radar coordinates

via the parameters noted in Table 2.

There are seven super-observation parameters: del

azimuth, Du; del elevation angle, D«; del range, Dr; del
time, Dt; maximum elevation angle, «max; minimum

number, N; and maximum range Rmax. Du, D«, and

Dr control the width, height, and length of the super-

observation box azimuthally, in elevation, and along

the beam, respectively; Dt is the one-half time window

for which to include observations; and N is the mini-

mum number of observations that must exist within the

super-observation box defined in space and time in or-

der for a super-observation to be calculated. Finally,

«max and Rmax are the maximum allowable radar ele-

vation angle andmaximum range from the radar (i.e., an

observation is discarded if it exceeds either of these

values). Together, these parameters define a four-

dimensional box in radar observation space and time

that forms the bounds for which the observations

are processed into super-observations. The effects of

FIG. 4. Results from the 908 tilt single observation test (SOT). The pseudo-observation

(black dot) was placed 1 km above the Fort Hood, TX, radar KGRK (red star) with an in-

novation of11m s21 and an observation error of 1m s21. 3DVar analysis increments are shown

for (a) zonal wind u and (b) vertical velocity w.
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the super-observation parameters can be captured by

visualizing the radar observations before (Fig. 6a) and

after (Figs. 6c,d) the radial winds have undergone super-

observation preprocessing. The corresponding radar

reflectivity observations are shown in (Fig. 6b) for

reference. Through visual comparison, one can see that

Fig. 6d features more detail than Fig. 6c when compared

to the unprocessed, raw data depicted in Fig. 6a.

The maximum possible number of super-observations

per radar at a single time can be estimated using the

following equation:

Maximum possible number of super-observations

5
3608

Du
3

R
max

DR
3

a
max

Da
.

For the default super-observation settings, there

could be up to 28 800 super-observations per radar and

up to 158 400 with the modified experimental values.

The actual number of super-observations will gener-

ally be much lower because observations will exist in

only a fraction of the total radar volume. For example,

the super-observation counts that correspond to the

FIG. 5. Results from the 08 tilt single observation test (SOT). The observation (black

dot) was placed 20 km directly to the east of the Fort Hood, TX, radar KGRK (red star)

about 200 m above ground level with an innovation of 11 m s21 and an observation error

of 1 m s21. 3DVar analysis increments are shown for (a) zonal wind u and (b) vertical

velocity w.
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KGRK radar for the convective period 1800 UTC

30 October 2015 shown in Fig. 6a are 8000 and 25 000

super-observations for the default and modified super-

observation settings, respectively.

In addition to visualizing how modifying the super-

observation parameters will change the spatial and

temporal geometry of the super-observation box, it is

also important to understand how this will affect the

TABLE 2. List of the super-observation parameters and their default and experimental values.

Configuration

Azimuth

range (8)
Elevation angle

range (8)
Radial

range (m)

One-half time

range (h)

Max elevation

angle (8)
Min No. of

samples

Du D« Dr Dt «max N

Default 5 0.25 5000 60.500 5 50

Experimental 3 0.25 3000 60.125 10 10

FIG. 6. (a) Level-II radial wind observations before and (c),(d) after super-observation processing using the default super-observation

settings and experimental super-observation settings for the radial winds. (b) The associated radar reflectivity for;1800UTC 30Oct 2015

is shown for reference.
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processing of the underlying data. A rough estimation

of the maximum number of radial wind observations

(Mmax) that can be contained within a single super-

observation box can be obtained by

M
max

5
Du

18
3

DR

250m
3 120

Dt

5min

assuming the radial wind observation spatial reso-

lution of 18 3 250m, a temporal resolution of 5min,

and only one scan per elevation angle. The maximum

number of observations per super-observation box can

only be estimated due to a few factors:

1) The actual beamwidth may differ slightly from the

assumed 18. This could increase or decrease the

number of observations.

2) During severe weather events, whenmore aggressive

volume coverage patterns may be used, there could

be more than one scan at the same tilt. This will

increase the number of observations.

3) The 0.258 super-observation box height (D«) may

include data from two elevations, possibly increasing

the number of observations.

4) When the radarmode changes, scan timesmay not be

5-min, which could increase or decrease the number

of observations.

The estimated number of observations per super-

observation box are 1200 and 108 for the specified

parameters in Table 2 for the default and modified

configurations, respectively.

Figures 7a and 7b depict the distributions of the num-

ber of observations per super-observation box for a single

time and radar that corresponds with Figs. 6c and 6d,

respectively. The default configuration shows a bimodal

distribution with a peak near zero and a peak around

650–700 observations but shows that few of the super-

observations were generated at or near the maximum

possible number of radial winds in a super-observation

box (Mmax). The features represented by radial winds

evolve at subhourly intervals which may partially ex-

plain the large difference in the actual and estimated

number of observations per super-observation box.

The default time window for assimilating radial winds

is one hour (630min), but there is no guarantee that

those features will exist in or totally encompass a super-

observation box during that entire period. For example,

a super-observation box may be located near a storm

boundary and may include observations from only a few

minutes. Observation quality control may also play a

role by discarding observations of poor quality.

The large time window for aggregation has the poten-

tial to smooth out convective-scale features of interest as

they evolve on relatively short time scales. By reducing

the time window of observations to 15min (67.5min), the

super-observations should be more representative of the

analysis time and we see a peak in Fig. 7b at 100–120

observations corresponding to the estimated max num-

ber of observations of 108 for the given settings.

d. Experimental design

To test the impact of adding vertical velocity to the

radial wind observation operator and the associated

sensitivities with super-observation parameters refined

to retain more detail, a control simulation and four ex-

periments were initialized at 0000 UTC 30October 2015

on the 3-km CONUS nest grid (Table 3). The modified

super-observation parameter values were chosen based

on limited, preliminary testing that showed improved

wind analyses balanced with considerations toward the

data assimilation system memory limitations.3

1) control: Configured to match the operational NAMv4

with the exception of refined radial wind quality

control discussed in Lippi et al. (2016) which elimi-

nated the quality check against velocity–azimuth dis-

play (VAD)winds. TheVADwinds are radar-specific

wind profiles derived from the radial wind field and

are based on a linearized windmodel (Holleman et al.

2005). The procedure of the VADquality control is to

compare the radial wind super-observations to the

VAD derived winds. Only observations that agree

with the VAD winds within a predetermined toler-

ance are accepted. This has the impact of retaining

only those winds that align with the larger-scale flow

derived from the VAD wind profile and discards the

winds representative of the convective scale. Since

this study focuses on the assimilation of radial wind

observations associated with a convective system the

VAD quality control step was removed in this work

(Lippi et al. 2016).

2) w_incl: As in control, but includes w in the observa-

tion operator and as an analysis variable.

3) w_so_elev5: As in w_incl, but uses refined super-

observation (so) parameters to retain more detail

and keeps themaximum elevation angle at 58 (elev5).
4) w_so_elev10: As in w_so_elev5, but raises the max-

imum elevation angle to 108 (elev10).
5) so_elev10: As in w_so_elev10, butw is not used in the

observation operator.

3 There are specific run time and disk space limitations that must

be considered for implementing a system in operations. In this

example we must exercise caution assimilating raw, unprocessed

observations which can exceed the available memory on compute

nodes. Thinning observations and creating super-observations

helps eliminate this issue while also addressing other scientific

concerns, such as representativeness.
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e. Verification

Frequency bias (FBIAS) and the fractions skill

score (FSS) were used to objectively evaluate fore-

casts of accumulated precipitation. The verification

was computed on a common, 5-km grid that encom-

passed the area of focus for the case study (Fig. 2; gray

shaded). A description for each of the statistical

methods follows.

FIG. 7. (a),(b) Distribution of the number of radial wind observation per super-observation

box (M) for a single time and radar that corresponds with Figs. 6c and 6d, respectively. Ad-

ditional information appears in the annotation box, which includes the estimated maximum

value forM, the total number of super-observations boxes for one radar, the number of super-

observation that would be assimilated (M $ N), the count of super-observations that do not

meet the requirement of N but have at least one Level-II observation, the count of super-

observation boxes with 0 radial wind observations, and finally the maximum and minimum

values for M for this case.
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FBIAS is used to determine if the forecast is too ‘‘dry’’

or too ‘‘wet’’ and is calculated in the following manner:

FBIAS 5
hits 1 false alarms

hits 1 misses
. (4)

Stated more simply, FBIAS is the ratio of ‘‘yes’’ fore-

casts to ‘‘yes’’ observations.

FBIAS greater than 1 (less than 1) indicates fewer

(more) points predicting a given threshold compared to

observations [i.e., a dry bias (wet bias)].

The FSS is a neighborhood verification approach

which relaxes the requirement for forecast and ob-

served events to match exactly at the grid scale. Instead,

the fractional coverage of predicted and observed grid-

point events above a specified threshold is compared

over a range of increasing spatial windows (Roberts

and Lean 2008).

The FSS is computed in the following manner:

FSS 5 12

1

N
�
N

(P
f
2P

o
)2

1

N
�
N

P2
f 1�

N

P2
o

5 12
FBS

FBS
worst

, (5)

where N is the number of grid points contained within

the neighborhood area; Pf is the fractional coverage

of forecast events that exceed a predetermined thresh-

old; and Po is the fractional coverage of observed events

that exceed the threshold. The FSS is thus the ratio be-

tween the fractional Brier score (FBS; related to the dif-

ference between the fractional coverage of predicted and

observed events that exceed the threshold) and the worst

possible FBS (FBSworst; related to the summation of the

total number of forecast and observed fractions that ex-

ceed the threshold). FSS reveals how well the forecast

resembles the observations at a given spatial window. The

FSS ranges from 0 to 1 where 0 would be a complete

mismatch and 1 would be a perfect match of forecast

events to observed events.

All statistics were aggregated in 3-hourly periods

for accumulated precipitation out to 18 h for the 0900,

1200, 1500, and 1800 forecast cycles on 30 October 2015;

the 3-hourly cycles are used to accommodate the 3-h

buckets of the precipitation observations. A boot-

strapping technique, using 2000 replications, was used to

test for statistical significance at the 90% confidence level.

f. Case study overview

Retrospective forecasts during the convectively active

period of 30–31 October 2015 in the southern plains

weremade to evaluate the impact of themodifications to

the radial wind observation operator as well as the mod-

ifications to the super-observation parameters. This case

was chosen because it consists of a fairly diverse set of

forcing mechanisms including an upper-level short-wave

trough, cold front, interaction between the low-level jet

(LLJ) and a warm front, and a prefrontal confluence zone.

Additionally, this case exhibited heavy precipitation,

flooding, damaging winds, and several tornadoes. More

than one foot of rain fell in less than 24h betweenAustin

and SanAntonio, Texas (Fig. 8), which caused extensive

flooding throughout that region. Another line of heavy

precipitation occurred later in the period near Houston,

Texas. Several tornadoes rated between EF-0 and EF-2

were reported in these two regions (Fig. 9).

3. Results

a. Data assimilation system fit-to-observations

The analysis impact of the modified observation oper-

ator and refined super-observation processing can be di-

agnosed by comparing the observation-minus-background

(OmB) and observation-minus-analysis (OmA) residuals

TABLE 3. List of NAMv4 radial wind data assimilation experiments and the configurations for the super-observation settings as well as if

vertical velocity is used in the observation operator and as a control variable. Each super-observation parameter (Du, D«, Dr, Dt, «max, and

N) has a distinct impact on the resulting super-observation box size in time and space. Du, D«, and Dr control the width, height, and length

of the super-observation box azimuthally, in elevation, and along the beam, respectively. Dt is the time window for which to include

observations, andN is the minimum number of observations that must exist within the super-observation box defined in space and time in

order for a super-observation to be calculated. Finally, «max is the maximum allowable radar elevation angle (i.e., an observation is

discarded if it exceeds this value).

Exp w

Azimuth

range (8)
Elevation angle

range (8)
Radial

range (m)

One-half time

range (h)

Min No. of

samples

Max elevation

angle (8)

Du D« Dr Dt N «max

control No 5 0.25 5000 60.500 50 5

w_incl Yes 5 0.25 5000 60.500 50 5

w_so_elev5 Yes 3 0.25 3000 60.125 20 5

w_so_elev10 Yes 3 0.25 3000 60.125 20 10

so_elev10 No 3 0.25 3000 60.125 20 10
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between experiments. Three statistics from the fit-to-

observations will be analyzed: observation counts,

root-mean-square (RMS) innovation, and bias.

There are two factors that affect the observa-

tion counts: event-specific observation availability and

experimental-specific factors, which includes the pre-

processing of the observations via tunable super-

observation parameters. The increase in observation

counts from 0900 UTC (Fig. 10a) through 1800 UTC

(Fig. 10d) is the result of storms developing within the

FIG. 8. NCEP stage IV observed total 24-h precipitation (in.) valid at 1200 UTC 31 Oct 2015

(Lin and Mitchell 2005).

FIG. 9. Tornado reports for 1200 UTC 30 Oct–1200 UTC 31 Oct 2015 from the Storm Pre-

diction Center from the Austin and Houston, TX, areas. All times are in UTC. (Data available

online at http://www.spc.noaa.gov/exper/archive/event.php?date520151030.)
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CONUS domain, and thus increasing the number

of scattering particles for the radar(s). Additionally,

super-observation processing over smaller spatial and

temporal box sizes results in a larger number of total

super-observations. For example, the control and w_incl

assimilate the same number of super-observations (e.g.,

Fig. 10d red line versus black line) since there is no

change to the super-observation parameters. There

are more super-observations in w_so_elev5 due to the

reduction in super-observation box sizes, thus allowing

for more super-observation boxes (e.g., Fig. 7). By

raising the elevation angle from 58 to 108 in experiments

w_so_elev10 and so_elev10, there is an additional in-

crease in the observation counts. The two elev_10 ex-

periments (e.g., Fig. 10d blue line versus purple line)

assimilate the same number of super-observations

since the only difference between those experiments

is related to the observation operator.

A direct comparison of RMS and bias values cannot

be made between experiments with differing super-

observations parameters due to sensitivities related to

changing the underlying characteristics of the super-

observations themselves (e.g., differing sample sizes

as noted in the prior paragraph). For example, chang-

ing the degree of super-observation processing, by

changing the spatial box size and time window length,

will change the statistics within the super-observation

box (e.g., variance). This effect is then compounded

from the use of data assimilation cycling and com-

plicates the ability to interpret the results between

experiments using differing super-observation pa-

rameter settings. Therefore, only two comparisons

FIG. 10. Counts from the observation minus background (OmB; circles/solid line) and observation minus analysis (OmA; triangles/dashed

lines) statistics files over entire CONUS nest domain for the forecast cycles (a) 0900, (b) 1200, (c) 1500, and (d) 1800 UTC 30 Oct 2015. The

individual circle/triangle markers along the x axis denote the aggregate values for the total CONUS atmosphere. Note: the OmB and OmA

observation counts are nearly identical and therefore the lines overlap sufficiently to be indistinguishable.
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will be made, both of which only consider the effects

of including vertical velocity in the observation op-

erator: control versus w_incl and so_elev10 versus

w_so_elev10.

There is an overall neutral impact on the OmB/OmA

RMS (Fig. 11) and bias (Fig. 12) as a result of extending

the forward operator to include w. The OmB RMS and

bias for experiment w_so_elev10 (w_incl) have little to

no differences compared to the counterpart experi-

ment so_elev10 (the control). Based on this limited

dataset, there is no consistent improvement or degra-

dation in the RMS and bias of the fit-to-observations

for differences as a result of the improved observation

operator. In general, the OmB RMS/bias values are

larger than their corresponding OmA RMS/bias for

each experiment; which is expected.

b. Forecast assessment

To assess the impacts on the resulting forecasts, we

begin with a qualitative comparison of forecasts of ac-

cumulated precipitation from the 1200UTC initialization

time on 30 October 2015 (Fig. 13). This is followed by an

assessment of FSS and FBIAS scores from forecasts ini-

tialized at 0900, 1200, 1500, and 1800 UTC 30 October

2015 (Figs. 14 and 15). Each experiment (refer toTable 3)

was tested for statistical significance at the 90% level

using bootstrap confidence intervals constructed from

2000 replications on the difference curves computed rel-

ative to the control simulation. Statistical significance is

found where the confidence intervals do not encompass

zero. Statistics are considered only over the approxi-

mate region that experienced heavy rainfall, which is a

broad area covering the southern CONUS (Fig. 2; gray

shaded). Further, FSS statistics are summarized across

several thresholds and box sizes via the use of a so-called

scorecard (Fig. 16).

The control (Fig. 13b) simulated a much larger area

of very heavy precipitation located near central Texas

as compared to observations (Fig. 13a) and compared

to the experiments with modified super-observation

parameters (Figs. 13d–f, respectively). The changes in

the coverage of the heavy precipitation can be noted

FIG. 11. Root-mean-square (RMS) error from the GSI observation minus background (OmB; circles/solid line)

and observation minus analysis (OmA; triangles/dashed lines) statistics files over entire CONUS nest domain for

the forecast cycles (a) 0000, (b) 0600, (c) 1200, and (d) 1800UTC 30Oct 2015. The individual circle/trianglemarkers

along the x axis denote the aggregate values for the total CONUS atmosphere.
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by the 3 in. contour (Fig. 13 bold black line). The over-

prediction of the precipitation is reduced in this area

when the super-observation parameters were adjusted,

suggesting some sensitivity to the super-observation

processing. There appears to be qualitatively little-to-

no impact made when vertical velocity was included in

the observation operator when comparing against the

control (experiment w_incl; Fig. 13b). The FSS (Fig. 14)

and FBIAS (Fig. 15a) difference scores support this

mostly neutral change as the control (black) and w_

incl (red) lines are consistently very similar among all

metrics and thresholds, with the exception of FBIAS

degradation at 0.10 and 0.25 in. and an improvement

at 1.00 in. The scorecard (Fig. 16) shows that the dif-

ference between w_incl and the control is slightly

degraded for the lower thresholds (e.g., 0.01, 0.05, and

0.10 in.) at all box sizes and slightly improved for the

higher thresholds (e.g., 0.50 and 1.00 in.).

There was a slightly more distinct impact in w_so_elev5

(Fig. 13d), as compared to the control and the w_incl

experiments. In experiment w_so_elev5, the spatial

coverage of the wet bias of the precipitation bullseye

near Austin was reduced. While the wet bias in this

region was reduced, the placement of precipita-

tion was slightly eastward of the observed location.

The w_so_elev5 FSS (Fig. 14) difference scores show

similar but larger impacts to that of experiment

w_incl. Slight degradation (improvement) is found

for the lower (higher) thresholds. For FBIAS (Fig. 15a)

there is degradation at thresholds 0.01 and 0.05 in.

[i.e., increasing the wet bias of control (Fig. 15b)],

and a trend toward improvements at thresholds 0.50

and 1.00 in. The scorecard (Fig. 16) shows w_so_elev5

to have a similar pattern to w_incl, but there is less

degradation at the low thresholds and stronger im-

provements at higher thresholds. There is an overall

slight improvement for all box sizes and all thresholds

as compared to w_incl.

The w_so_elev10 and so_elev10 experiments (Figs. 13e

and 13f, respectively), having similar forecasts, further

FIG. 12. Bias from the GSI observation minus background (OmB; circles/solid line) and observation minus

analysis (OmA; triangles/dashed lines) statistics files over entire CONUS nest domain for the forecast cycles

(a) 0000, (b) 0600, (c) 1200, and (d) 1800 UTC 30 Oct 2015. The individual circle/triangle markers along the x axis

denote the aggregate values for the total CONUS atmosphere.
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reduce spatial coverage of the precipitation bullseye

as compared to w_so_elev5. The elev10 experiments

appear to have the subjectively better overall forecasts

as the broad wet-bias in the central part of Texas

appears improved and more closely reflects the extent

and magnitude seen in observations. While both ex-

periments still miss the heavy rain in southeast Texas

extending over the Gulf, they do reflect heavy precipi-

tation in the region associated with rotating storms that

occurred later in the period (discussed in section 3c),

FIG. 13. 18-h accumulated precipitation for the period 1200 UTC 30 Oct–0600 UTC 31 Oct 2015. (a) The observations and the ex-

periments are (b) control, (c) w_incl, (d) w_so_elev5, (e) w_so_elev10, and (f) so_elev10. The white dot (30.278N, 97.748W) denotes the

location ofAustin, TX, and the white dot (29.768N, 95.378W)denotes the location ofHouston, TX. The black contour denotes the area of 3 in.

FIG. 14. Fractions skill score (FSS) differences from control for 3-h precipitation forecasts

out to 18 h aggregated from 3-hourly forecasts initialized beginning at 0900, 1200, 1500, and

1800 UTC 30 Oct 2015.
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unlike the control andw_incl. The FSS statistics (Fig. 14)

confirm the positive forecast impact at 0.25 and

0.50 in. but slight degradation at 1.00 in. The FBIAS

statistics (Fig. 15a) show a reduction in wet bias for the

0.50 and 1.00 in. thresholds. From this set of experi-

ments, there is not a clear signal that suggests that

including vertical velocity provides a statistically sig-

nificant advantage. The largest improvements may be

attributed to the enhanced super-observation settings

with raised elevation angles, in the margins of statis-

tical significance.

The experiments with modified super-observation

parameters tended to have the greatest positive im-

pact on the forecast. The extension of vertical velocity

to the observation operator was found to have mostly

neutral impacts in combination with the modified

super-observation parameters (Fig. 16). The three super-

observation experiments exhibited heavy precipitation

FIG. 15. Frequency bias (FBIAS) difference from (a) control and (b) the control FBIAS

values for 3-h precipitation forecasts out to 18 h aggregated from 3-hourly forecasts initialized

beginning at 0900, 1200, 1500, and 1800 UTC 30 Oct 2015.
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located near Houston (Figs. 13d,e,f) with increas-

ing magnitudes when higher elevation angles were

included. This is an important distinction because there

was a marked increase in simulated storm rotation cor-

relating to the locations of tornado reports.

c. Houston, Texas, region precipitation

Here we discuss the aspects of the experimental con-

figurations that led to the differences in precipitation

forecasts along the Texas Gulf Coast and into Houston

and use tornado reports as a proxy for storms with ro-

tating updrafts.

Figure 9 notes the time and date of each tornado

report for the 1200 UTC 30 October–1159 UTC

31 October forecast period; the earliest tornado report

in the Houston region occurred after 0900 UTC

31 October 2015. According to observed radar reflectivity,

the storms associated with the tornado reports in the

Houston area initiated just off the coast of Port

O’Connor, Texas, around 0300 UTC 31 October 2015.

The storms traveled northeastward into the Houston

area where several tornadoes occurred. This discus-

sion will focus on the 1200 UTC initialized forecast

performance with a focus on the updraft helicity fore-

casts near Houston.

The 1200 UTC initialized super-observation experi-

ments, especially so_elev10 and w_so_elev10 all pre-

dicted heavy precipitation along the Texas Gulf Coast

beginning near Port O’Connor and extending into the

Houston region. This is a major difference between

these experiments and the non-super-observation ex-

periments as the non-super-observation experiments

were not able to capture the initiation and life cycle of

the storms associated with the warm frontal boundary

(Fig. 17a) and low-level jet. As it was noted before,

the storms in this region initiated around 0300 UTC

31 October 2015 while the super-observation experi-

ments tended to have a much earlier initiation of several

hours (e.g., 6 1 hours) prior to verification. The elev10

experiments clearly predicted strong, rotating storms

(Figs. 18c–f) to occur in the location that was being

monitored by the Storm Prediction Center (Fig. 17a)

and more closely corresponds to the locations of the

observed tornado reports (Fig. 9) in the Houston area as

well as with observed radar reflectivity (Fig. 18h). The

control run predicted storms from 1900 to 0000 UTC

31 October (Figs. 18a,b) that were associated with in-

teraction with the warm front. Those storms were less

organized and less persistent as compared to the modi-

fied super-observation parameter experiments.

FIG. 16. Fractions skill score (FSS) scorecard for the differences between the control and

each experiment for various accumulated precipitation thresholds and box sizes. Improve-

ments and degradations are shown, rounded to three decimal places, with the corresponding

statistical significance at the 90% and 95% confidence intervals.
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The forecasts are clearly sensitive to the super-

observation parameters. The super-observation settings

were modified to average observations over a smaller

spatial box and temporal window; therefore, there were

fewer observations per super-observation box and thus

a lesser degree of smoothing of the observations. By

smoothing over smaller spatial and temporal windows,

there were was a greater density of total super-

observations assimilated where each was more repre-

sentative of the raw form of the observations occurring

at the time of assimilation. The demonstrated sensitiv-

ity indicates that the operational super-observation

settings (i.e., those used in the control) smoothes the

observations to a greater degree than necessary and

discards potentially useful information. Averaging over

a long time period may also have the undesirable im-

pact of dampening significant convective-scale motions

(e.g., situations when the observations change rapidly

at subhourly time intervals). The modified configura-

tion used within this study, however, may not necessarily

be the optimal configuration for these parameters but

identifies sensitivities that result in potential forecast

improvement thus forming a foundation for contin-

ued development toward improving the assimilation of

these data.

d. Forecast sensitivity to background error
covariance length scales

The three experiments that feature vertical velocity

in the observation operator: w_incl, w_so_elev5, and

w_so_elev10 were also run with the same global con-

stant background error covariance 0.7m2 s22 but dif-

ferent horizontal and vertical length scale: 100-km and

1-grid units, respectively. These values correspond to

default values that may be used by the GSI. The forecast

impacts were also assessed for this new set of experi-

ments using the 18-h total accumulated precipitation

plot from the 1200 UTC cycle and the corresponding

FSS stats summarized by a scorecard for multiple

thresholds and box sizes (not shown). The experiments

that featured vertical velocity in the observation oper-

ator and as an analysis control variable were rerun to

demonstrate that there is a forecast sensitivity to these

parameters despite that the fact that vertical velocity is

a diagnostic variable in the NMMB. Future research

should consider generating new background statistics

when considering analyzing vertical velocity and that

the results of this study are not conclusive to the im-

portance or lack thereof of including vertical velocity.

There was consistency in results that modifying the

super-observation parameters improved the results.

4. Summary and conclusions

The radial wind observation operator in the GSI was

extended to include vertical velocity and testing associ-

ated with the refinement of the radial wind super-

observation processing was performed in a single case

study. To evaluate the impacts of this extension, ex-

perimental configurations using an hourly configuration

of the NAMv4 data assimilation and model framework

was used beginning at 0000 UTC 30 October and ran

through 0000 UTC 31 October 2015. The data assimi-

lation consists of a hybrid 3DEnVar data assimilation

system which uses the hydrostatic GDAS ensemble

Kalman filter (;35-km) for the ensemble contribution.

The NAMv4 was run using a 12-km parent domain

and 3-km CONUS nest domain with the verification

run on a 5-km grid.

The experiments started with the control which

mimics the operational configuration with relaxed

quality control parameters for the radial wind observa-

tions. Incremental modifications to the experimental

setup followed by adding vertical velocity to the forward

FIG. 17. Storm prediction center mesoscale analysis for 0500 UTC 31 Oct 2015 (available online at http://

www.spc.noaa.gov/exper/archive/event.php?date520151030) accompanied by observed reflectivity valid at the

same time.
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FIG. 18. The 1200 UTC initialized, 24-h maximum updraft helicity (UH: masked below 50ms22) and radar

reflectivity (masked below 35dBZ) valid at 1200 UTC 31 Oct 2015 for (a),(b) control, (c),(d) w_so_elev10, and

(e),(f) so_elev10, respectively. For reference, the max radar reflectivity for the (g) convectively active regions

during the 6 h data assimilation period (0600–1200 UTC), and (h) the 24-h forecast period are also shown. The

updraft helicity that is boxed corresponds to the storms that developed at the intersection of the LLJ and warm

front boundary (Fig. 17a) and the storms that produced tornadoes [tornado reports: red dots on (a), (c), and (e)].

OCTOBER 2019 L I P P I E T AL . 3629

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:15 PM UTC



operator, adjusting some of the super-observation pa-

rameters, and finally, adjusting the maximum elevation

angle to 108. The experiments were evaluated using

objective analyses of accumulated precipitation using

categorical and neighborhood verification metrics ag-

gregated for 18-h forecasts over the 0900, 1200, 1500,

and 1800 UTC 30 October 2015 forecast cycles to ac-

commodate the 3-h precipitation observation buckets.

A constant value of 0.7m2 s22 was used for the back-

ground error covariance for vertical velocity and a

horizontal and vertical scale of influence of 27 km and

10 grid units, respectively, in the main set of experi-

ments. These values were chosen based on prelimi-

nary testing and tuning; however, future studies should

generate a new background error covariance which in-

cludes vertical velocity.

The fit-to-observations were used to assess the impact

to the data assimilation system between experiments

with differences only related to the radial wind ob-

servation operator. For example, the RMS innovation

from the GSI observation minus background and

analysis for the control was compared with w_incl and

experiment so_elev10 was compared with w_so_elev10.

The RMS scores showed a neutral impact on the

analysis for including vertical velocity in the obser-

vation operator.

Quantitative results for the elev10 experiments

showed slight improvements in the FSS of box size

60 km for accumulated precipitation at the 0.25 and

0.50 in. thresholds and in frequency bias at the 0.50

and 1.00 in. thresholds (Figs. 14 and 15). There was a

slight degradation in the lower FBIAS thresholds. A

summary of FSS statistics across a variety of thresholds

and scales were also presented in a scorecard (Fig. 16).

Results from the scorecard demonstrated that the

strongest sensitivity was to the super-observation pa-

rameters where those experiments mostly demonstrated

some (slight) improvement relative to the control. No

results showed statistical significance.

Because the model is not directly forced by the anal-

ysis of vertical velocity, the results from these experi-

ments can be attributed to two factors: 1) reducing the

error associated with the original Doppler radar ra-

dial wind forward operator via the inclusion of vertical

velocity and 2) refining the super-observation parame-

ters and adjusting the maximum elevation angle. The

most impactful changes resulting in forecast improve-

ment were associated with the refined super-observation

procedure in conjunction with the adjustment to the

max elevation angle.

The elev10 experiments (w_so_elev10 and so_elev10)

predicted a band of high precipitation accumulations

along the Texas Gulf Coast that was not present in the

control or w_incl experiment. This band of heavy pre-

cipitation corresponds to a simulated storm(s) with ro-

tating updrafts. These model simulated storms matched

closer to the location of observed tornado reports and

hence storms with rotating updrafts but still displaced

;100 km to the west.

There is support that the elev10 experiments showed

the greatest improvements to the forecast of accumu-

lated precipitation (Fig. 16) and demonstrated a more

accurate forecast of updraft helicity swaths corre-

sponding to tornado reports (Fig. 18). These findings

suggest that convective-scale model forecasts are

sensitive to the methods and settings for assimilating

radial winds.

Testing in an ideal framework revealed that errors

of up to 1ms21 could be expected for elevation angles

around 108 and vertical motions of 10m s21 (Fig. 3).

However, the results of this study appear contradictory;

the impact of adding vertical velocity to the forward

operator was effectively negligible. This result is likely

due to several factors which limits the generality of

the findings. Such limiting factors likely include: the

lack of a convective-scale ensemble in the hybrid

3DEnVar algorithm, the treatment of vertical veloc-

ity as a sink term in the analysis, limitations to a single

case, and frequency of assimilation of radial wind

observations.

A second set of experiments that featured vertical

velocity in the observation operator and as a control

variable were run using the same background error co-

variance but a horizontal and vertical scale of influence

of 100 km and 1 grid units, respectively. This additional

set of experiments showed mixed results and that the

tuning of the background error covariance statistics

play a crucial role in obtaining positive forecast impacts

even while using a nonhydrostatic model without a fully

prognostic term for vertical velocity.

The results of this work are to be considered as first

steps toward refining and improving the use of these

abundant, convective-scale data. There are additional

areas of convective-scale data assimilation to be ex-

plored in an operational context, such as the use of a

convective-scale ensemble and a more impactful use of

the analysis of vertical velocity instead of limiting it to

a sink term in the observation operator. These experi-

ments also only featured hourly data assimilation up-

dates while trying to characterize features that evolve

on subhourly time scales. Finally, future work toward

expanding these tests to additional cases will likely yield

more conclusive results.
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